CTKG-3B

高压开关一体化综合试验装置 使用说明书

杭州高电科技有限公司

地址: 杭州钱江经济开发区永泰路 2 号 15# 电话: 0571-89935606

网站: http://www.hzhv.com 邮箱: hzhv@hzhv.com

目 录

一、	装置简介	4
_,	基本功能	4
三、	模块功能	5
四、	仪器面板	6
五、	接线示意	8
六、	测试软件操作	9
1.	、开关一体化装置主界面介绍	9
2	、开关特性试验	12
	2.1 上位机菜单说明	13
	2.2 时间速度界面	14
	1)开关型号	14
	2) 功能按钮说明	17
	2.3 数据波形界面	18
	1) 界面简介	18
	2) 图形分析	21
	3) 重计算	23
	4) 包络线	25
	2.4 机械磨合试验界面	29
	2.5 动作电压试验界面	30
	1、手动动作电压	30
	2、自动动作电压	31
3.	、回路电阻试验	32
	1) 测试界面	32
	2)数据导出	33
4	、绝缘电阻试验	35
	1)测试界面	35
	2)数据导出	37
5.	、综合智能试验	39
七、	技术指标	52

52	1、整机:	1,
52	2、测试项目:	2、
53	、附录:参考标准	八、「

一、装置简介

科技进步日新月异,电网体系面向信息化、智能化、高效化和可靠化为一体的现代化电 网高速迈进,随着电网的建设速度和规模的不断扩大,各类配套试验项目日益完善,对各类 试验项目的需求也在逐步增加,特别是针对开关类的检修和试验项目。

目前,常规高压开关试验仪器种类繁多、功能单一;特别是在现场开展各项试验时,试验流程繁琐,更改接线频繁,试验完成后数据再经人工汇总、整理、分析。为提升试验项目的智能化、自动化、数字化水平,提升数据处理效率,研发新型的一体式综合型试验设备已是必然趋势。

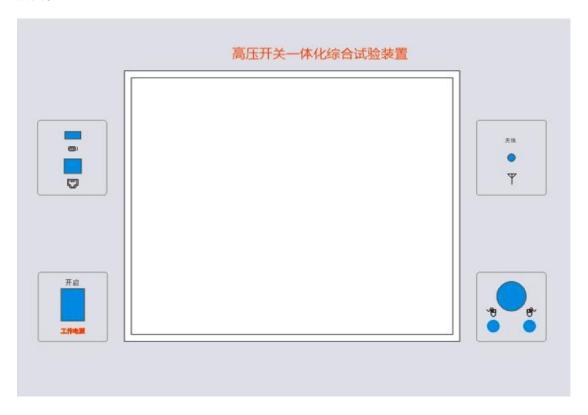
本产品针对 220 千伏及以下高压开关的开关综合参数一体化试验,配置开关试验接口矩阵,简化接线流程,可自动实现"主回路电阻试验"、"主回路绝缘电阻试验"、"主回路 耐压试验"、"二次回路绝缘电阻试验"、"二次回路直流电阻试验"、"机械特性试验"等多类试验项目测试。另外本项目搭建的试验数据处理平台,自动采集、分析试验数据,一键生成试验报告,使现场作业的"安全、质量、效率、效益"得到综合性提升。

二、基本功能

该产品为新型、综合型、场景应用型的开关一体化试验系统,可通过接线矩阵切换装置实现一次接线完成多项试验,使现场作业的"安全、质量、效率、效益"得到综合性提升。

该产品可实现对完成试验接线的被试验对象(AIS、GIS、真空断路器、开关柜)进行"主回路绝缘电阻试验"、"二次回路绝缘电阻试验"、"主回路电阻试验"、"二次回路 直流电阻试验"、"机械特性试验"。

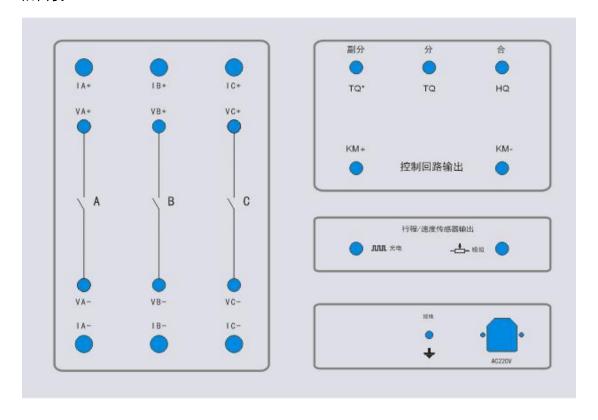
- (1) 支持主回路绝缘电阻试验功能
- (2) 支持二次回路绝缘电阻试验功能
- (3) 支持主回路电阻试验功能
- (4) 支持二次回路直流电阻试验功能
- (5) 支持机械特性试验功能
- (6) 支持主回路耐压试验功能
- (7) 支持单项试验功能
- (8) 支持多项试验顺控功能


- (9) 支持实验参数、系统参数配置功能
- (10) 支持实验数据存储功能
- (11) 支持历史数据对比分析功能
- (12) 支持一键生成试验报告功能
- (13) 支持试验报告导出功能

三、模块功能

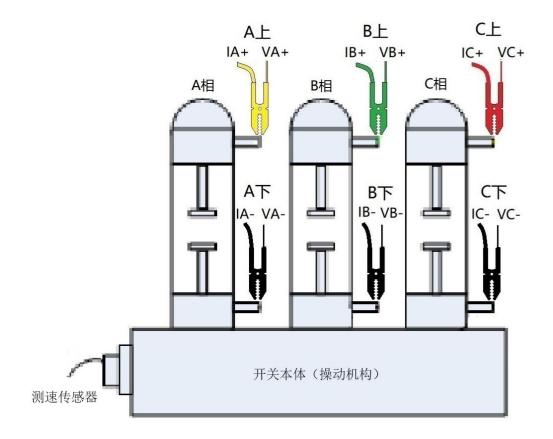
序号	子模块	功能描述
1	工控机及显示	为系统的主控单元
2	<i>编</i> 块由四进心样抽	主要实现 "开关本体绝缘试验"、"开关端口绝缘试验"、
2	绝缘电阻试验模块	"分闸线圈二次绝缘试验"、"合闸线圈二次绝缘试验"
2	同敗由四沿及横柏	主要实现"A相回路电阻试验"、"B相回路电阻试验"、
3	回路电阻试验模块	"C相回路电阻试验"
		主要实现"分合位置判断"、"分闸操作"、"合闸操作"、
	┸╸╇╅	"分闸动作电压"、"合闸动作电压"、"分闸试验(时
4	机械特性试验模块	间、速度、线圈电阻)"、"合闸试验(时间、速度、线
		圈电阻)"
-	+ \ \cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot	主要实现进行各项试验时的试验模块与被试验对象的测
5	接线矩阵切换模块	试或控制线路的接线切换

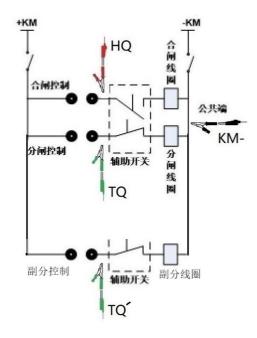
四、仪器面板


前面板

前面板说明:

- 1) 面板左面,从上到下依次为 USB 口、网口、电源开关。
- 2) 面板右面,从上到下依次为通讯天线、轨迹球鼠标。
- 3) 面板中部为12寸工控机触摸屏。


后面板


后面板说明:

- 1) 面板左上部依次从左到右排列 3 对电流电压插座,采用大电流回路电阻测试线夹(红、黑为 1 对,其中电流钳为大插座,电压钳为直径 4mm 插座),按色别分别接到开关 A、B、C 静、动触头对相上。
- 2) 面板右部依次从上到下排列为开关操动控制回路:输出接线口副分、分、合闸,KM+、KM-接开关储能。
- 3) 面板右部中间为仪器测速接口, 依次可选光电、模拟传感器。
- 4) 面板右下部为接地端、交流电源插口。

五、接线示意

控制回路

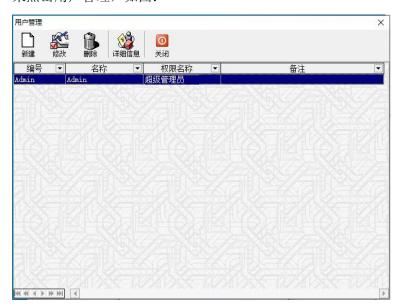
六、测试软件操作

1、开关一体化装置主界面介绍

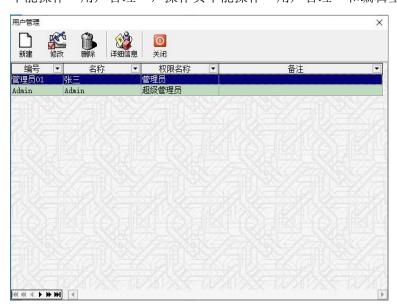
以上图为例,左面一排分别为"开关特性试验"、"绝缘电阻试验","回路电阻试验"、 "综合智能试验"四个测试选项,后面再详细介绍,先介绍右边其他模块。

串口配置:点击进入,如图:

我们可以看到本一体化装置包含的各仪器的串口配置,注意,开关的波特率为115200, 其他的波特率设置为9600。

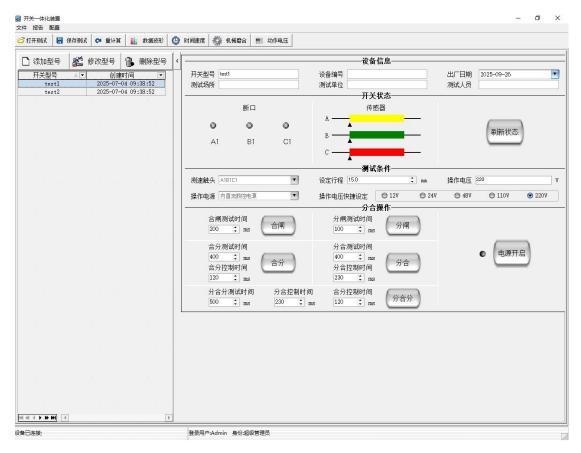

用户配置:用户管理这一块,如果不考虑操作员的权限,每次登陆软件时,只需默认使用 Admin 用户名登陆即可(Admin 为所有权限)。现点击进入,如图:

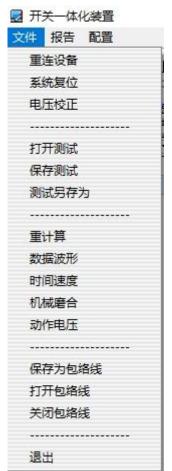
两个选项,分别为修改密码和用户管理,修改密码为当前登陆用户修改自己的登录密码; 用户管理只有超级管理员 Admin 可以操作,主要用来维护用户管理。我们先选"修改密码"后按确定,如图:


输入旧密码和新密码后就能更新密码。因为我们是以超级管理员身份登录的,所以接下来点击用户管理,如图:

我们可以看见用户管理的主界面,点击"新建",如图:

这里输入相关信息,设3位密码,权限可以选两项中的一项,管理员或操作员(管理员不能操作"用户管理",操作员不能操作"用户管理"和编辑型号)。按确定后如下图:


超级管理员将新增加的用户名和密码告诉新的用户,新用户可以选择刚才添加的用户登录软件。如图:


关于:显示当前软件的版本,如图:

2、开关特性试验

进入开关特性测试后会联机,这是联机后的界面

2.1 上位机菜单说明

重连设备:运行软件后会自动连接设备,如未连接成功,可在菜单中选择"重连设备"连接设备。

系统复位: 开关设备恢复出厂设置。

电压校正:校正开关设备的电压。

打开测试:打开以前保存的"高压开关特性测试"结果文件,文件后缀名为"CBA"。

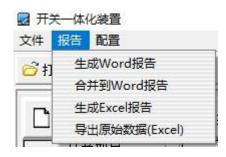
保存测试:保存已经完成的"高压开关特性测试",文件后缀名为"CBA"。

测试另存为:将打开的"测试文件"保存为另一个文件。

重计算:对于已完成的"高压开关特性-时间速度测试",重新选择"速度定义"并设置相关的参数后,重新计算测试结果。

数据波形: 切换到测试结果界面,显示测试结果数据和时间速度波形图。

机械磨合: 打开"机械磨合"界面,可进行高压开关机械磨合测试。


动作电压: 打开"动作电压"界面,可进行高压开关动作电压 测试。

保存为包络线:对于已完成的"高压开关特性-时间速度测试",以该测试的波形图为标准,通过设定参数后,得到包络线,并保存成文件。

打开包络线:对于已完成的"高压开关特性-时间速度测试",打开以前的保存的包络线文件,使用包络线和波形图进行比较分析。

关闭包络线: 关闭已经打开的包络线。

● 退出:退出当前的测试软件。

● 生成 Word 报告:对于已完成的"高压开关特性-时间速度测试",将测试结果以 Word 文件格式保存。合并到 Word 报告:对于已完成的"高压开关特性-时间速度测试",将测试结果合并到之前保存的 Word 文件中,以实现一个 word 文件包含了多个测试结果。

生成 Excel 报告:对于已完成的"高压开关特性-时间速度测试",将测试结果以 Excel 文

件格式保存。

导出原始数据:将各项行程原始数据生成Excel文件。

数据报告设置:对于已完成的"高压开关特性-时间速度测试",可进行三项设置。1、测试结果是否需要判断合格; 2、导出 Word 时是否导出测试图形。3、导出 Excel 时是否导出测试图形。

高压开关通讯设置:上位机与下位机串口通讯设置。

上述功能按钮的作用和菜单中的一样。

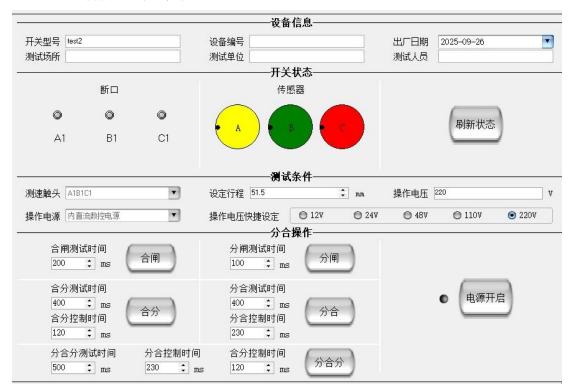
2.2 时间速度界面

1) 开关型号

运行软件后默认出现的界面为"时间速度界面",界面左边区域为开关型号列表,我们可以看见左边的开关列表,包含两个开关型号,"test1"和"test2",可以看见光条(蓝色)对应的是"test1",表明当前软件指向的是开关型号"test1",如下图:

右边的区域,如下图:

				信息		
开关型号 测试场所	test1		设备编号 测试单位		出厂日期 测试人员	2025-09-26
			开关	状态		
	断口		传题	蒸器		
0	©	©	A —			刷新状态
A1	B1	C1	В			APOST DOC
			C —			
		<u> </u>		条件———		
测速触头	A1B1C1	•	设定行程 [15.0	m	m 操作电压	220 V
操作电源	内直流数控电源	v	操作电压快捷设定	● 12V	24V (48V	
			分 合	操作———	At .	
	测试时间	合闸	分闸测试时间	分闸		
200	‡ ms		100 ‡ ms			-
	^分 测试时间		分合测试时间			- 体源工户
400	· Inc	合分	400 ‡ ms	分合		电源开启
合为 120	分控制时间 ↓ ms		分合控制时间 230 ‡ ms			_
-		八合物制叶河				
77) E 500	合分测试时间 ↓ ms	分合控制时间 230 ‡ ms	合分控制时间 120 ‡ ms	分合分		
		, , , , , , , , , , , , , , , , , , ,			<u> </u>	


"开关状态"、"测试条件"、"分合操作"对应的是型号"test1"的特性和设置参数,譬如说"test1"型号传感器图形显示的是模拟传感器,设定行程显示的是 15mm, 这都是与"test1"型号配置有关, 我们点击"修改型号"按钮, 如下图:

关型号					
基本设置			时间设置	un	
开关型号	test1		储 能 时 长(合前)	20000	ms
制造单位			储能时长(分前)	20000	ms
触头类型	普通型		合闸测试时间(单合)	200	ms
测速触头	A1B1C1	•	分闸测试时间(单分)	100	ms
操作电源	内直流电源		合分测试时间(合分)	400	ms
操作电压		220 ¥	合分控制时间(合分)	120	ms
辅助接点	湿接点		分合测试时间(分合)	400	ms
行程传感器	模拟传感器		分合控制时间(分合)	230	ms
行程类型	输入型		分合分测试时间(分合分)	500	ms
电机电流	不测量	•	分合控制时间(分合分)	230	ms
设定行程		15.00 mm	合分控制时间(分合分)	120	ms
计时电流		0.10 A	合闸脉宽	100	ms
				100	ms
東度定义					
速度定义3 合 合育	ற் 10.0 🗘 ms	分	↑ 分后 10.0 💲 ms	更多〉	

可以看见型号"test1"的参数配置,其中行程传感器为模拟传感器,设定行程为15.00mm。 关闭修改界面,回到主界面上,选定型号"test2",如图:

开关型号 △ 🔽	创建时间	•
test1	2025-07-04 09:38:52	
test2	2025-07-04 09:38:52	

右边区域相应显示,如图:

我们看见传感器图形显示的是"数字传感器",设定行程也相应为51.5mm。

在左边区域点击"添加型号",如图:

输入相关信息后按确定即可增加新型号,如果在前面的菜单->配置->数据报告设置中

的"测试结果是否需要判断合格"这一项选中,则会添加测试结果的判断参数,如下图:

关型 号						
基本设置	ON:			时间设置		
开关型号				储 能 时 长(合前)	20000	ms
制造单位				储能时长(分前)	20000	ms
触头类型	普通型	•		合闸测试时间(单合)	200	ms
测速触头	A1B1C1	•		分闸测试时间(单分)	100	ms
操作电源	内直流电源	•		合分测试时间(合分)	400	ms
操作电压		220	٧	合分控制时间(合分)	120	ms
辅助接点	湿接点	•		分合测试时间(分合)	400	ms
行程传感器	数字传感器			分合控制时间(分合)	230	ms
行程类型	輸入型	•		分合分测试时间(分合分)	500	ms
电机电流	不测量	•		分合控制时间(分合分)	230	ms
设定行程		50.00	mm	合分控制时间(分合分)	120	ms
计时电流		0.10	А	合闸脉宽	100	ms
脉冲数		2500	线	分闸脉宽	100	ms
速度定义 速度定义3 合 合 合格判断条件(分			分 ——分i	分后 [10.0 ‡] ms	更多>>)
分闸时间(ms) 18.0	\$ ~ 45.0 \$	分闸三相同期			's) 1.0	‡
分闸反弹(mm)	≤ 2.00 ‡	分闸过冲(mm) —合i	≤ 2.00 ‡		
合闸时间(ms) 25.0		合闸三相同期	男(m	≤ 2.0 ‡ 合闸速度(m/		÷
合闸开距(mm) 8.00	\$\sim \[10.00 \ \displies \]	弹跳次数(次 合闸反弹(mm		g 3	3) ≤ 2.0	\$

2) 功能按钮说明

刷新状态:刷新"开关断口"和"传感器"状态。

电源开启(关闭): 开启或关闭电源。在不使用外电源以及内手动电源的情况下,进行分合闸操作,应先开启电源。

合闸: 左面可以设置测试时间, 如下图:

分闸: 左面可以设置测试时间,如下图:

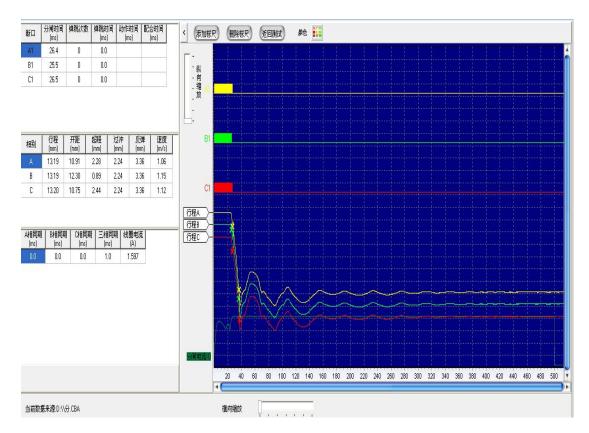
分闸测试时		
100 ‡	ms	分闸

合分: 左面可以设置"测试时间"和"控制时间",如下图:

分合: 左面可以设置"测试时间"和"控制时间",如下图:

点击按钮可进行相关的测试。

分合分: 左面可以设置"测试时间"、"分合控制时间"和"合分控制时间",如下图:


点击按钮可进行相关的测试。

上述测试完成后,点击"保存测试"按钮可以以文件形式保存测试结果,文件后缀为 ".CBA"。

2.3 数据波形界面

1) 界面简介

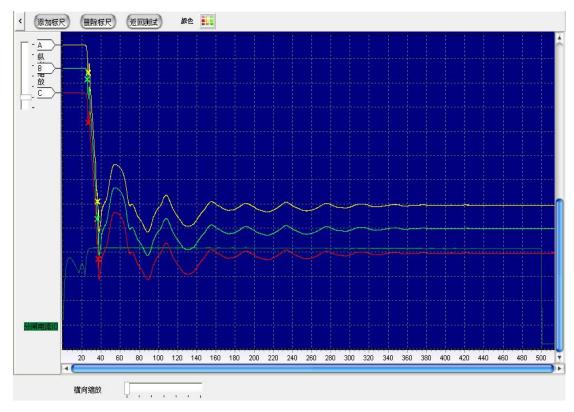
完成"时间速度测试"和"打开测试"都可以查看时间速度测试结果,且会切换至"数据波形界面",我们这里打开测试文件"分.CBA",如下图:

左边区域为数据区域,显示测试结果数据,包含断口数据、行程传感器数据等。

右边区域为图形区域,显示测试结果图形,包含断口图形,行程曲线图、电流曲线图等。 图形可以纵向放大和横向放大,通过滑动刻度实现。

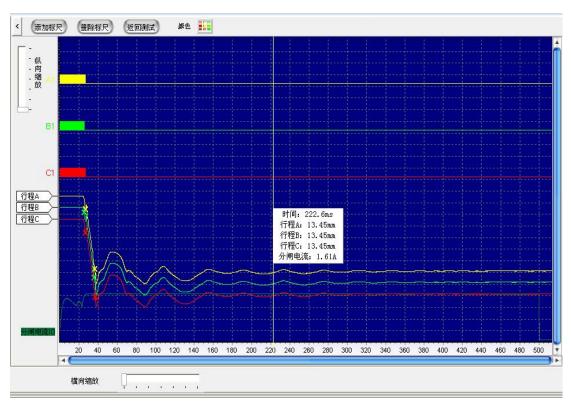
横向缩放,如下图:

横向拖动后如下图:



拖动最下面的蓝色拉杆, 可左右移动图形。

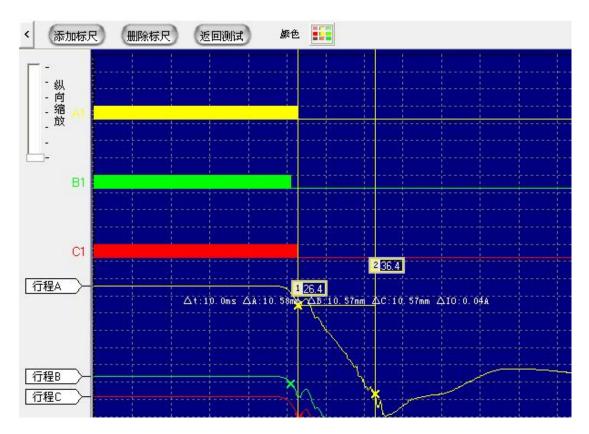
纵向缩放,如下图:


纵向拖动后如下图:

拖动最右面的蓝色拉杆,可上下移动图形。

2) 图形分析

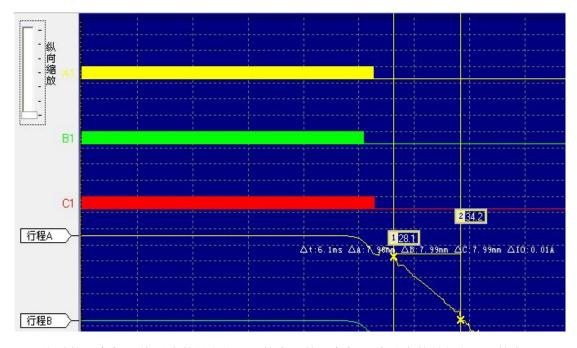
回到刚打开测试结果的图形状态,将鼠标放移至图形上,如下图:



我们可以看到浮动面板,上面显示有时间、行程 A、行程 B、行程 C 和分闸电流值。 时间的值刚好对应下方的图像下方的时间刻度轴,随着鼠标的移动,面板也会相应移动,各个值也会相应变化。

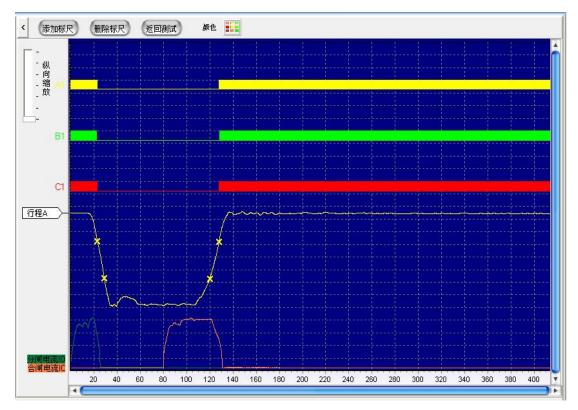
通过拖动图形最右边的"行程标尺"可以上下移动行程曲线,假设我们要分析行程 A, 为了方便分析,我们可以将行程 B 和 C 向下移动分开,并横向放大图形,如下图:

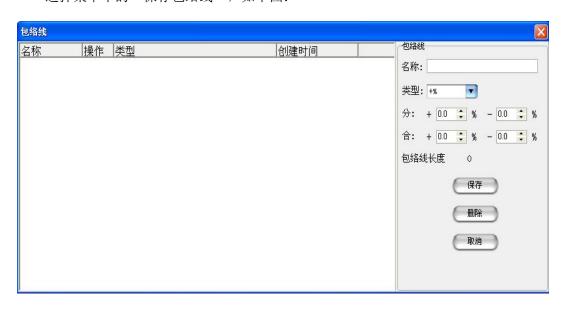
这个测试的时间速度定义为"速度定义 3"为合后 10ms, 我们点击"添加标尺"按钮, 添加两条标尺线, 分别拖至两个"叉叉"标记上, 如下图:


1号标尺线显示的时间刚好是分闸时间,2号标尺线显示的时间为分后 10ms,时间可以对应上。两标尺之间可以显示标尺时间差值、行程差值、电流差值。

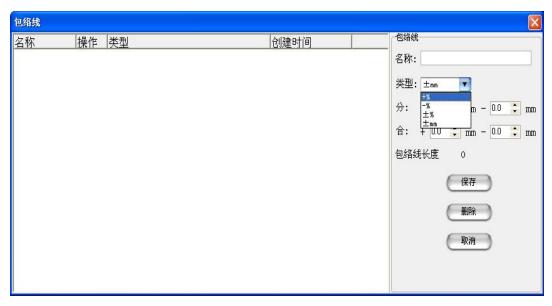
3) 重计算

点击"重计算"按钮,如下图:


我们可以选择速度定义,设置相关参数后重新进行计算,这里选择速度定义 2,为行程 80%至 20%,选好以后点击"重计算"按钮,如下图:


这时第一条标尺线对应的是行程80%的点,第二条标尺线对应的是行程20%的点。

4) 包络线



选择菜单中的"保存包络线",如下图:

点击"类型"选择框,如下图:

有四个选项:

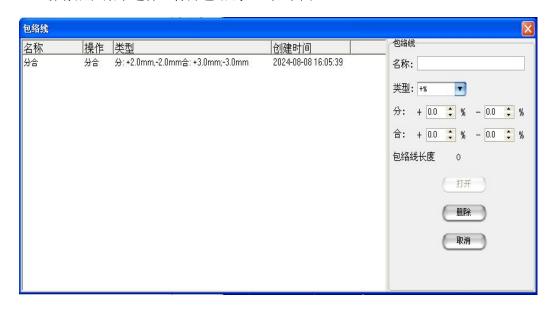
- +%: 原有的行程线上, 形成一条"增加某个行程比例值"的包络线。
- -%: 原有的行程线上, 形成一条"减少某个行程比例值"的包络线。
- **±%**: 原有的行程线上,形成一条"增加某个行程比例值"的包络线和形成一条"减少某个行程比例值"的包络线。
- **±mm:** 原有的行程线上,形成一条"增加某个行程值(mm)"的包络线和形成一条"减少某个行程值(mm)"的包络线。
- "类型"下方有四个百分比设置框,如下图:

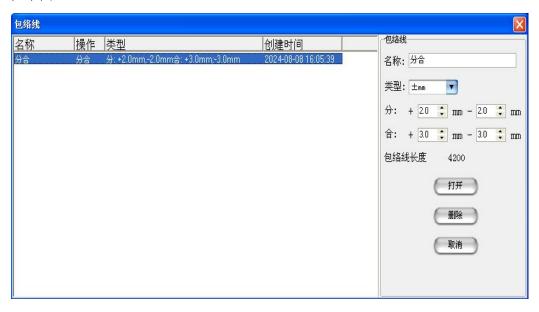
此处显示 "%" 单位在 "类型" 选择 "+%"、 "-%"、 "±%" 时显示。选 "+%" 时, "-"设置框无效;选 "-%"时, "+"设置框无效;选 "±%"时, "+"、 "-"设置框都有效。

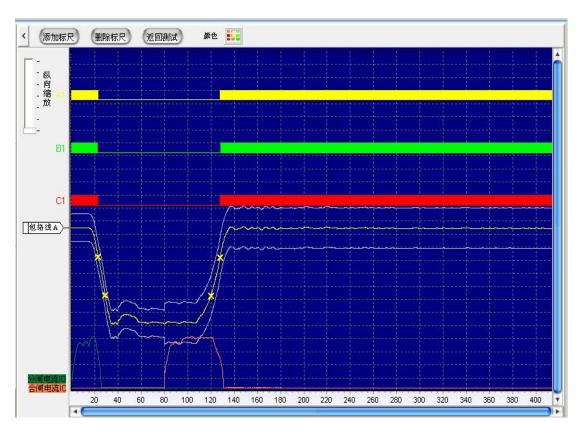
"分"这行的 "+" 代表处于行程的"分"的区间设置"增加某个行程比例值"的包络线, "-" 代表处于行程的"分"的区间设置"减少某个行程比例值"的包络线。"合"这行的 "+" 代表处于行程的"合"的区间设置"增加某个行程比例值"的包络线, "-" 代表处于行程的"合"的区间设置"减少某个行程比例值"的包络线。我们将"类型"选择为"±mm", 四个百分比设置框的单位变成"mm",如下图:

此时,设置框的含义发生了变化:

"分"这行的 "+" 代表处于行程的"分"的区间设置"增加某个行程值(mm)"的包络线, "-" 代表处于行程的"分"的区间设置"减少某个行程值(mm)"的包络线。 "合"这行的 "+" 代表处于行程的"合"的区间设置"增加某个行程值(mm)"的包络线, "-" 代表处于行程的"合"的区间设置"减少某个行程值(mm)"的包络线。


现在设置"分"的"+"和"-"都为 2mm, "合"的"+"和"-"都为 3mm, 包络线名称为"分合", 如下图:


点击"保存"按钮,如下图:


保存后在菜单选择"打开包络线",如下图:

我们可以看见左侧为包络线列表,鼠标点击选定"名称"为"分合"这一行的包络线,如下图:

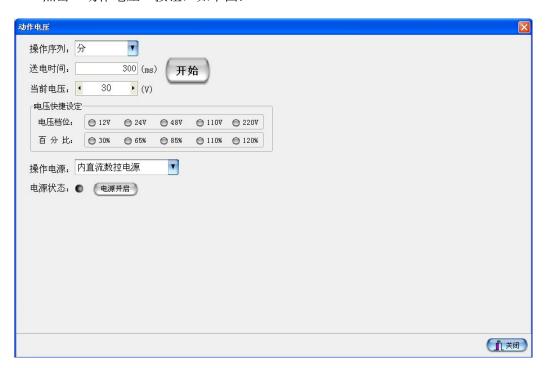
如点击"删除"按钮则将删除此包络线,我们点击"打开"按钮,如下图:

我们可以看见形成的包络线。

2.4 机械磨合试验界面

点击"机械磨合"按钮,如下图:

设置相关参数后,即可进行机械磨合试验。注意,操作电源为内数控电源则需要先开启电源。


2.5 动作电压试验界面

点击功能按钮"动作电压"后弹出选择框,我们可以选择"手动"或"自动"模式。

1、手动动作电压

点击"动作电压"按钮,如下图:

设置相关参数后,即可进行动作电压试验。注意,操作电源为内数控电源则需要先开启电源。

2、自动动作电压

我们可以看见左边黑色区域图(状态信息),以断口 A1 为例,如下图:

我们看见 A1 旁边的图形为空心圆,表示当前 A1 为断开状态,如果是 ,则表示当前 A1 为合闸状态。下面的数字表示当前 A1 断口的操作电压。以动作电压-合闸为例,当 A1 断口从分闸状态随着电压自动提升变为合闸状态时,A1 下面的电压数字即为 A1 的合闸电压。

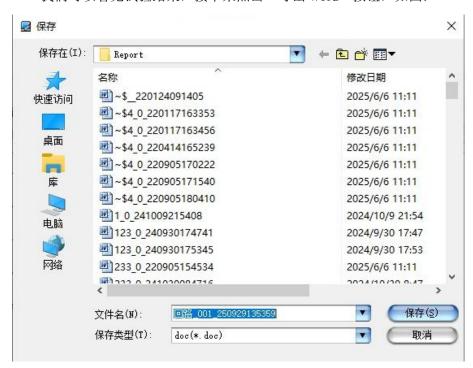
右边区域为为一系列参数设置,设置起始电压和终止电压等等,设置完后按"开始"按 钮即可开始测试。

3、回路电阻试验

1) 测试界面

在主界面上点击"回路电阻试验"按钮,如图:

填写完信息和参数后,点击"测试"按钮,开始测试,如图:



测试完后,如图:

2) 数据导出

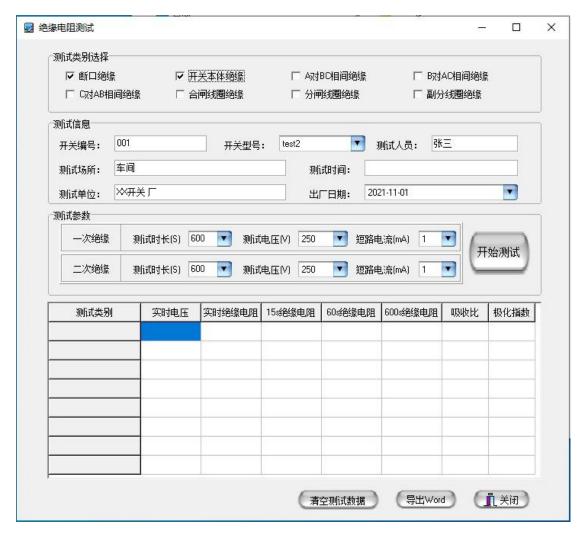
我们可以看见试验结果,接下来点击"导出 word"按钮,如图:

用户可以自定义文件名,然后按"保存"按钮,如图:

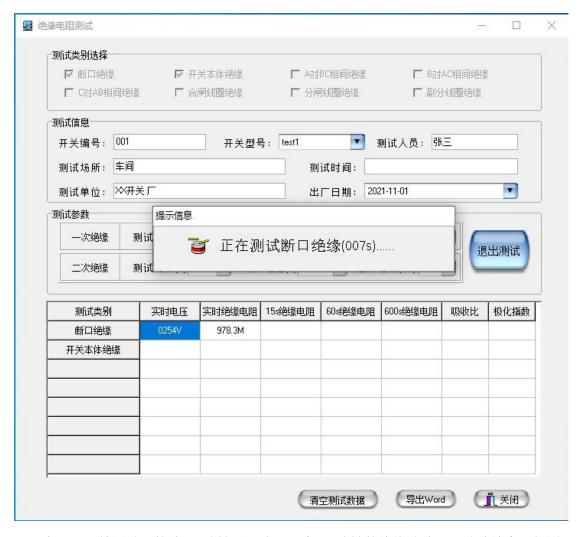
点击打开,如图:

回路试验报告。

4


测试场所₽	张三↩	测试时间₽	₽.	4
测试单位₽	xx 开关 厂₽	测试人员₽	3K.Ξ.₽	÷
开关型号₽	test2₽	开关编号₽	001₽	+
制造单位₽	P	出厂日期₽	2025-09-29₽	+
电流档位₽	100AA₽	测试时长₽	30s₽	4
		ę.		4
测试相₽	测试电阻₽	测试电压₽	测试电流₽	4
ą.	63.1 μΩ₽	6.6987 mV₽	106.0 A₽	47
Đ.	63.1 μΩ√	6.6987 mV₽	106.0 A₽	4
₽	55.1 μΩ₽	5.8415 mV₽	106.0 A₽	42

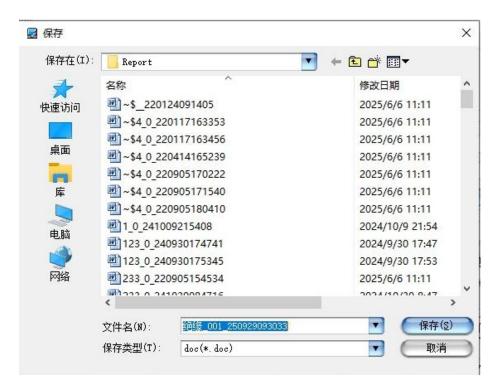
4


4、绝缘电阻试验

1) 测试界面

在主界面上点击"绝缘电阻测试"按钮,入图:

在测试类别选项上有8个种类的绝缘试验可以选择,这里选"断口绝缘"和"开关本体绝缘",其他设置完测试信息和测试参数后,点击"开始测试"按钮,如图:



表示已开始测试,持续20分钟后(选了两个10分钟的绝缘试验),试验结束,如图:

2) 数据导出

这时候已经完成试验并得到试验结果,接下来点击"导出 word"按钮,如图:

用户可以自定义文件名,然后按"保存"按钮,如图:

点击打开,如图:

绝缘试验报告

测试场所₽ 车间₽ 测试时间₽ 2025-09-29 09:09:0247 测试单位₽ XX 开关 厂₽ 测试人员₽ 张三₽ 开关型号₽ 开关编号₽ test2₽ 001₽ 制造单位₽ 出厂日期₽ 2021-11-01₽ 测试时长(s)₽ 测试电压(V)₽ 短路电流(mA)₽ 一次绝缘₽ 600₽ 250₽ 二次绝缘₽ 600₽ 250₽ 测试类别₽ 15s 绝缘电阻₽ 60s 绝缘电阻₽ 吸收比₽ 600s 绝缘电阻₽ 极化指数₽ 断口绝缘₽ 337.9M₽ 377.4M ₽ 392.4M₽ 1.116₽ 1.039₽ 开关本体绝缘₽ 87.56G₽ 162.6G₽ 1.138T ₽ 1.857₽ 7.002₽

¥

5、综合智能试验

在主界面上点击"综合智能试验"按钮,进入综合智能试验设置界面,如图:

合智能试验		-549/6			>
		测话	战基本信息		
开关型号	test2	设备编号	001	出厂日期 2024-10-01	
测试场所	车间	测试单位	×开关厂	测试人员 账三	
				(下一步	

这里的信息是最近使用过的信息,开关型号不能直接修改,点击"开关型号"旁的文本框,如下图:弹出个列表框,我们可以用鼠标选定,这里还是选"test2"。

综合智能试验					×
		测	试基本信息	ļ.,	
开关型号	test2	设备编	명 001		出厂日期 2021-11-01
测试场所	test2 test1		2025-07-04 09:38:52 2025-07-04 09:38:52		测试人员 张三
	81			71	
	((()) ()			Þ	
					下一步

设置完基本信息后,按"下一步"按钮,如图:

这个页面可以设置开关机械特性试验的选项,我们看见有三个分类,分别为"分合闸试验"、"动作电压试验"、"不脱扣试验"。点击"分合闸试验",弹出设置框后我们勾选需要测试的项目,如图:

分合闸试验	动作电压试验		不脱扣试验
设定行程 15.0 🛟	测试参数 mm 操作电压 ²²⁰	: v	
_	─测试选项──	*	
▽ 合闸 测试时间 200 💲	ms	: ms	
□ 合分 合分测试时间 400 ♣□ 合分 合分控制时间 120 ♣	▽ 分合	t ms	
✓ 分合分测试时间✓ 分合分测试时间✓ 分合控制时间	00	• ms	

然后点击页面空白处退出"分合闸试验"设置,如图:

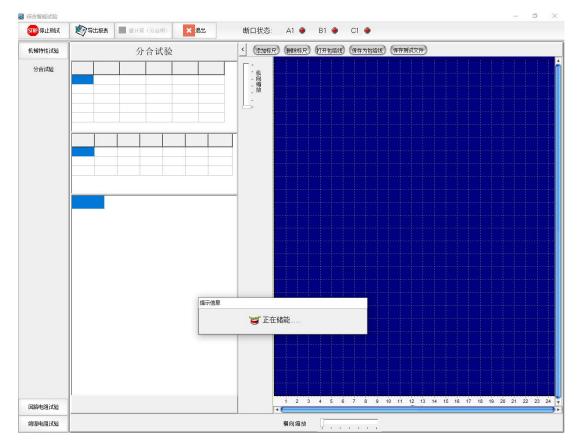
我们看见"分合闸试验"标签的左下角有红色三角形标记,代表"分合闸试验"中有项目被选定。然后点击"动作电压试验",设置完要测试的项目,如图:

综合智能试验					×
	Ŧ	干关机械	特性试验	₹	
分合闸i	式验	动作目	电压试验	不脱扣	试验
	-	 #	试参数———	*	
	额定电压: 22	0V T	电压脉宽:	300ms	
	起始电压:	30 V	升压幅度:	5V 🔻	
	终止电压:	242V	间隔时间:	2s 🔻	
	<u> </u>	 测	试选项———	*	
	┏ 合闸	V	分闸	□副分	
<u> </u>					1
(上一步				(下一步	
S					

退出"动作电压试验"我们进入"不脱扣试验"的设置,设定完后如图:

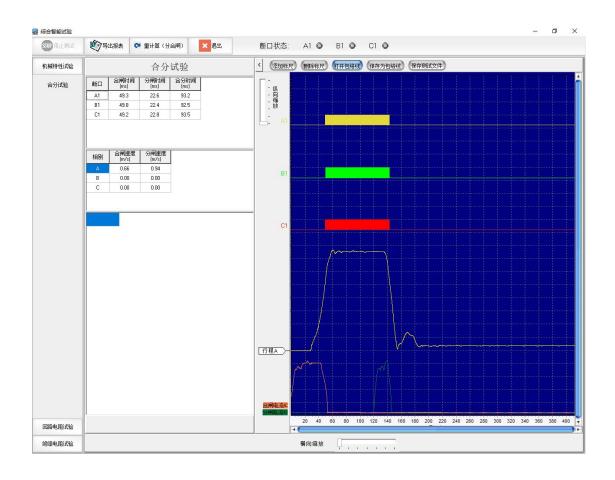
合智能试验				
	开关机械等	持性试验	Ì	
分合闸试验	动作电	且压试验	不脱扣试	验
		2:	——测试选项——————————————————————————————————	
		▶ 合闸	脱扣试验电压: 300	
		▶ 分闸	脱扣试验电压: 300	
		□副分	脱扣试验电压: 300	1
(上一步)			(下一步)	

设置完"不脱扣试验"后如图:

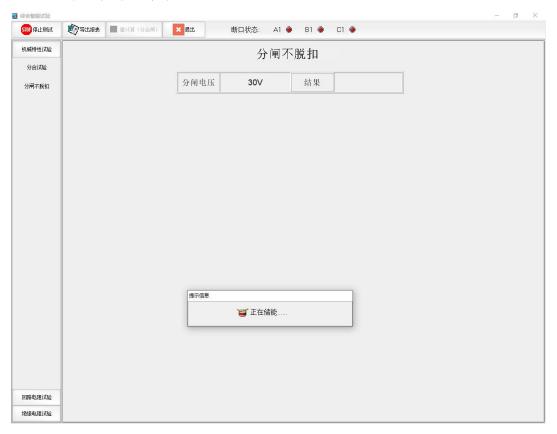

然后我们点击"下一步"按钮,如图:

合智能试验		
	回路电阻试验	
	测试参数———	
电流档位: 10	A 测试时长(秒)	: 30 🔻
	测试选项	
► A相回路	▽ B相回路	▽ C相回路
上一步		下一步

上图勾选完我们要测试的项目,注意"电流档位"只能为100A,测试时长最多为60秒。然后点击"下一步"按钮,如图:

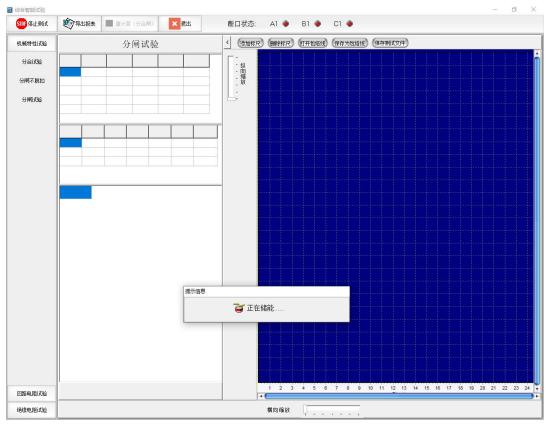

试验			
	绝缘甲	 	
		缘测试参数————	
则试时长(s) 60	测试电压(V	2500 ▼ 短路日	电流 (mA) 5 ▼
	二次绝	缘测试参数————	
则试时长(s) 60	测试电压(V) 500 ▼ 短路日	也流 (mA) 5 ▼
		试选项	
斯 口绝缘	☑ 开关本体绝缘	▼ A对BC相间绝缘	☑ B对AC相间绝缘
で C对AB相间绝缘	┏ 合闸线圈绝缘	▶ 分闸线圈绝缘	□副分线圈绝缘
备注: 合闸线圈绝缘、	分闸线圈绝缘、副分线圈绝线	易为二次绝缘,其余试验为−	−次绝缘)
(上一步)			开始试验

上图我们设置了需要测试的项目,接下来点击"开始试验"即可开始综合智能试验。

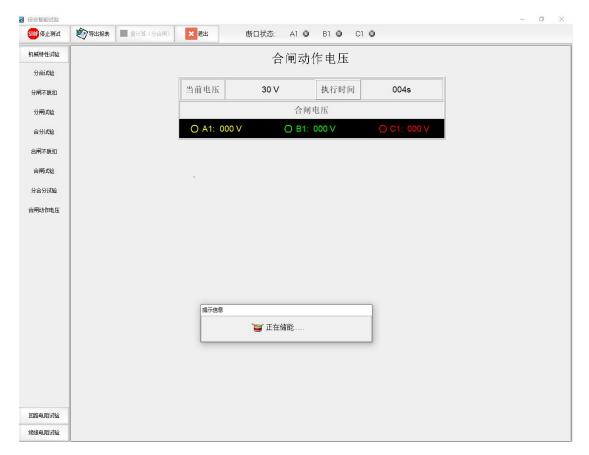


上图为进入测试过程的第一个试验,整个试验过程按"机械特性试验"、"回路电阻试验"、"绝缘电阻试验"三个大类的顺序依次进行,"机械特性试验"中的各个分类试验会根据"分合闸状态"进行智能排序而依次完成试验。上图显示的试验为"机械特性试验"下面的"分合试验",正在处于分合闸操作之前的储能状态,显示界面的顶部为开关当前的"断口状态"。

"分合试验"完成后的结果如下图:

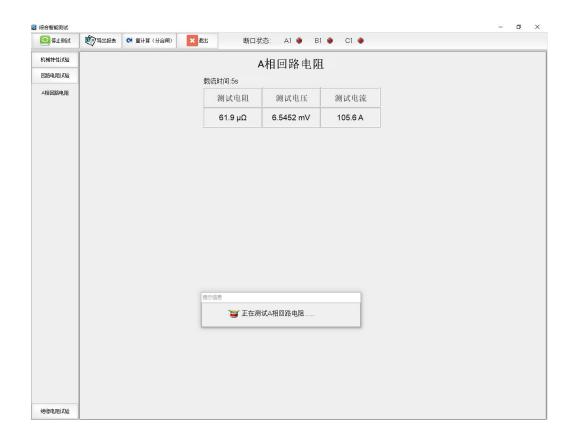

进入下一个试验,如图:

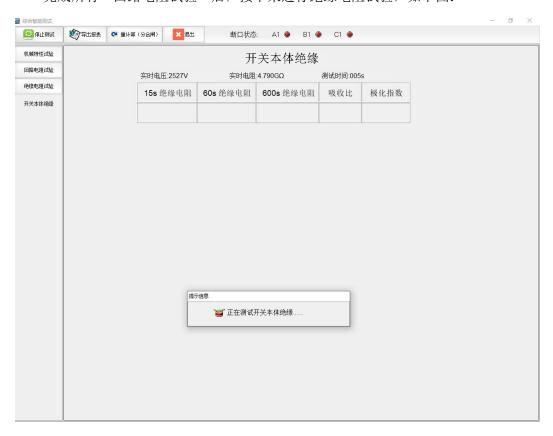
上图为"分闸不脱扣"试验,就是在设定的某个开关操作电压下没有进行分闸动作,即为成功,反之为失败。试验结果如下图:



完成"分闸不脱扣"后进入下一个试验,如图:

这个试验为"分闸"试验。接下来为"合分试验"和"合闸不脱扣"试验,这里不再展示。


这两个试验后是"合闸动作电压",如下图:


"合闸动作电压"试验按之前设定的参数,从 30V 电压起送电一次,之后每隔 2 秒增加 5V 电压送电,电压脉宽为 300ms,以此往复,直至完成合闸操作。完成"合闸动作电压"试验的状况如下图:

我们看见,3个断口合闸电压都为85V。至此我们已完成了"机械特性试验"(副分没选),接下来是"回路电阻试验",先测试A相回路,如下图:

完成所有"回路电阻试验"后,接下来进行绝缘电阻试验,如下图:

上图为"开关本体绝缘"试验,因为设定试验时间为60秒,所以测试结果只有15s绝

缘电阻、60s 绝缘电阻和吸收比,如下图:

	开	关本体绝缘		
实时电压:0589V	实时电阻	:8.808GΩ	测试时间:063	s
15s 绝缘电阻	60s 绝缘电阻	600s 绝缘电阻	吸收比	极化指数
7.457GΩ	8.808GΩ		1.181	

之后完成其余的绝缘电阻试验,因为除了绝缘试验名称不一致,其余显示模式都相同,这里不再重复显示。要注意的是一次绝缘和二次绝缘的测试参数设置是分开的(分闸、合闸、副分线圈试验为二次绝缘)。

下面为测试报告,如图:

综合试验报告。

基本信息。

测试场所₽	车间₽	测试时间₽	2025-10-21 15:13:24	3
测试单位₽	хх 开关厂₽	测试人员₽	3长三↩	ĺ
开关型号₽	test2₽	开关编号₽	001₽	1
制造单位₽	ē.	出厂日期₽	2025/10/21₽	

上图显示的为基本信息,下面显示"机械特性-合闸试验"的报告,如图:

机械特性-合闸试验

断口	п	合闸时间 (ms).,	9	弹跳次数。	弹跳时 (ms)	(0.20)	动作	时(ins).	525 Vice	記合时间 (ms).1
A1.1		48. 8.,		1.1	1.3			્ર		Ş.
B1.1		49. 2.1		1.1	1.3	-		્ર	7	S.
C1.1	-	48. 7.1		1.1	1.4	-1		્ર		ş
	(4)				.,	150			(4)	
A 相同期 (ms).,	B 相同 (ms)	0000	同期	三相同期	线图电流 (A).,	线图: (Ω	电阻 :),,	电	机电流 (A).	电流时间 (ms)。
0. 0.1	0.0	. 0.	0.1	0. 5.1	5. 198.	42	2.1	(0.000.1	0. 0.1
	×*		(6)		17	V.		50	(4)	
相别。	行程	开距	超程	2.	反弹	速度	角度	7.52	角速度	角速度
	(mm) .1	(mm) .1	(mm)	100	(mm) .1	(m/s),	(•	_	1(rad/s)	
A.r	15. 00.1	10. 34.4	4. 66.	100	0. 26.1	0. 69.1	37. 6	_	30. 40.	
В.,	0.00.1	0. 00.т	0.00.		0.00.1	0.00.1	0.0	_	0. 0.1	0. 0.1
C.1	0.00.1	0.00.т	0.00.	0.00.1	0.00.1	0.00.1	0.0	0.1	0. 0.1	0. 0.1
organia (
CT CT										
CI C					线图。	SSC 556 346 146	130 108 140	145 174	5 (1) 18e 101 190 1	H 200 204 270 318

因为类似,不再显示其他分合闸试验报告。下图显示"机械特性-动作电压试验"和"机械特性-不脱扣试验"报告:

机械特性-动作电压试验。

+‡+	1	111以1寸1工 49	开电压风机	Z ↔	
3 0	· P	A1₽	B1 <i>₽</i>	C1₽	τ.
	合闸电压₽	50 ₩₽	50 ∀₽	50 ₩₽	42
	合闸结果₽	成功₽	成功₽	成功₽	4
85	分闸电压₽	75 V₽	75 ∀₽	75 V↔	43
	分闸结果₽	成功₽	成功₽	成功₽	42
	副分由压泵	ته	۵	ن	

机械特性-不脱扣试验。

类别↩	电压₽	不脱扣结果₽	4
合闸₽	30∀₽	成功₽	4
分闸₽	30∀₽	成功₽	+
副分₽	4	ę.	4

最后为"回路电阻试验"和"绝缘电阻试验"报告,如下图:

副分结果₽

回路电阻试验。

测试相₽	测试电阻₽	测试电压₽	测试电流₽	42			
A₽	61.8 μΩφ	6.5386 mV₽	105.6 A₽	٥			
B₽	52.9 μΩ₽	5.5995 mV₽	105.6 A₽	43			
C₽	54.3 μΩ₽	5.7429 mV₽	105.6 A₽	47			
	A↔ B÷	测试相中 测试电阻中 A中 61.8 μΩ中 B中 52.9 μΩ中	 測试相や 測试电阻や 測试电压や Aや 61.8 μΩ中 6.5386 mV中 Bや 52.9 μΩ中 5.5995 mV中 	 測试相や 利试电阻や 利试电压や 利试电流や Ae 61.8 μΩφ 6.5386 mVe 105.6 Ae Be 52.9 μΩφ 5.5995 mVe 105.6 Ae 			

绝缘电阻试验。

测试类别₽	测试电压₽	15s 绝缘₽	60s 绝缘₽	600s 绝缘₽	吸收比₽	极化指数₽
断口绝缘₽	2500₩₽	6.791GΩ₽	7.467GΩ₽	t)	1.100₽	٩
开关本体绝缘₽	2500∀₽	7.457G Ω ₽	8.808GΩ₽	٩	1.181₽	t)
A对BC相间绝缘₽	2500₩₽	6.033GΩ₽	6.2986 Ω₽	the Ch	1.044₽	the Co
B对 AC 相间绝缘₽	2500∀₽	6.198GΩ₽	6.534GΩ₽	t)	1.054₽	÷.
C 对 AB 相间绝缘₽	2500∀₽	6.851GΩ₽	7.1866 Ω₽	۵	1.049₽	۵
分闸线圈绝缘₽	500₩₽	5.000GΩ₽	5.0006Ω₽	43	1.000₽	to.
合闸线圈绝缘₽	500₩₽	5.0006Ω₽	5.0006Ω₽	t)	1.000₽	÷.
副分线圈绝缘₽	C	₽.	ت	ته	دي	۵

4

七、技术指标

1、整机:

- ◇ 工作电源: AC 198~264V, 47~63Hz
- ◇ 工作环境: 温度 -20°C~50°C, 湿度 ≤90%RH, 不结露, 海拔低于 2000 米
- ◇ 主机尺寸(不含包装): 长*高*深(不含把手)530*365*400mm
- ◇ 主机重量: 26kg

2、测试项目:

1) 回路电阻:

- ◇ 电流输出: 恒流
- ◇ 工作方式: 风冷、间歇
- ◇ 测试时间: 100A: 5~60S
- ◇ 测试范围: 0~20000.0μΩ (100A)
- ◇ 准确度: 0.5%读数±2字; 分辨率: 0.1 μ Ω

2) 绝缘电阻:

- ◇ 输出电压档位: DC250V/500V/1000V/2500V
- ◇ 功能参数:

500V: 0-5G

1000V: 0-20G

2500V: 0-500G,

◇ 电阻测试精度范围

1 M~10MΩ: 误差: ±5%FS (FS 为满量程值) ±10字

10M~10GΩ: 误差: ±3%FS (FS 为满量程值) ±5字;

10G~100GΩ: 误差: ±5%FS (FS 为满量程值) ±10 字

3) 机械特性:

- ◇ 测试断口: 3 路金属触头
- ◇ 时间测量范围: 1~20000ms。
- ◇ 准确度: ± (0.05%t+0.1 ms), 1~2000ms
- ◇ 分辨率 0.1ms; 2000~20000ms 分辨率 1ms

- ◇ 模拟传感器输入测量范围: 0~5V
- ◇ 模拟传感器电阻范围: 200 Ω~5kΩ
- ◇ 数字传感器接口:长线驱动器 RS422 接口
- ◇ 数字传感器测量角度准确度: ±0.1°,分辨率: 0.05°
- ◇ 行程测量范围取决于传感器长度。最高 1000mm。最小分辨率 0.01mm
- ◇ 行程测量准确度: ± (0.5%L+0.2 mm)
- ◇ 速度测量范围: 0~20m/s, 分辨率 0.01m/s
- ◇ 直流电源输出: 5~260V/20A, 最大功率 2kW
- ◇ 触发启动电压: ≥30V
- ◇ 分合闸动作电压:

电压范围: 5~260V

分辨率: 1V

准确度: ±1%读数±1V

◇ 线圈直流电阻:

测量范围: 20~5000 Ω

分辨率: 1Ω

精度: ± (1%R+1Ω)

八、附录:参考标准

GB 50150-2016《电气装置安装工程电气设备交接试验标准》;

DL/T 596-2021《电力设备预防性试验规程》;

DL/T 593-2016《高压开关设备和控制设备标准的共用技术要求》